# Application: Vegetation Biomass

### Vegetation Biomass

Select other Application.

## Basic information

Name Vegetation Biomass

## Indices

Nr. Name Formula Variables Comment
1 Simple Ratio NIR/RED $\frac{{\mathrm{NIR}}}{{\mathrm{RED}}}$
2 Enhanced Vegetation Index $2.5\frac{{\mathrm{NIR}}-{\mathrm{RED}}}{\left({\mathrm{NIR}}+6{\mathrm{RED}}-7.5{\mathrm{BLUE}}\right)+1}$
3 Normalized Difference NIR/Red $\frac{{\mathrm{NIR}}-{\mathrm{RED}}}{{\mathrm{NIR}}+{\mathrm{RED}}}$ RED=[670;50;30],NIR=[800;10;10]
4 Soil Adjusted Vegetation Index $\frac{{\mathrm{800nm}}-{\mathrm{670nm}}}{{\mathrm{800nm}}+{\mathrm{670nm}}+{L}}\left(1+{L}\right)$ L = 0,5
5 Transformed Soil Adjusted Vegetation Index $\frac{{B}\left({\mathrm{NIR}}-{B}·{R}-{A}\right)}{{\mathrm{RED}}+{B}\left({\mathrm{NIR}}-{A}\right)+{X}\left(1+{{B}}^{2}\right)}$ B=B
6 Simple Ratio 800/600 $\frac{{\mathrm{800nm}}}{{\mathrm{600nm}}}$
7 Simple Ratio 800/550 $\frac{{\mathrm{800nm}}}{{\mathrm{550nm}}}$
8 Wide Dynamic Range Vegetation Index $\frac{0.1{\mathrm{NIR}}-{\mathrm{RED}}}{0.1{\mathrm{NIR}}+{\mathrm{RED}}}$
9 Normalized Difference 2160/1540 $\frac{{\mathrm{2160nm-1540nm}}}{{\mathrm{2160nm}}+{\mathrm{1540nm}}}$

## Sensors

Nr. Name Spectral Range Bands
1 ChrisProbaM1 406-1003 62
2 ChrisProbaM2 406-1036 18
3 ChrisProbaM3 438-1035 18
4 ChrisProbaM4 486-796 18
5 ChrisProbaM5 438-1036 37
6 LandsatMSS (Landsat1-3) 500-1100 4
7 LandsatTM (Landsat4,5) 450-12500 7
8 LandsatETM+ (Landsat7) 450-12500 8
9 ASTER 520-11650 15
10 RapidEye 440-850 5
11 HyMap 429-2493.8 126
12 AVHRR 580-12500 6
13 MODIS 405-14385 36
14 QuickBird 450-900 5
15 SPOT 1-3 500-890 4
16 IKONOS-2 445-900 5
17 MERIS 407.5-905 15
18 Kompsat-2 0-900 5
19 EnMap 420-2450 244
20 GeoEye-1 450-920 5
21 Orbview-1 450-900 5
22 AVIRIS 355.15-2515 224
23 HRSC-A 395-1015 5
24 ChrisProbaM3A 420-910 18
25 Orbview-4 450-2450 200
26 ALI 433-2350 10
27 Hyperion 349.896-2582.28 242
28 SPOT 4 500-1750 5
29 SPOT 5 480-1750 5
30 WorldView-2 400-1040 9
31 Formosat-2 450-900 5
32 ALOS 0-890 6
33 CBERS-1/CBERS-2 450-890 8
34 WorldView-3 400-2365 29
35 SeaWiFS 412-905 8
36 MVISR 430-12200 10
37 VIRR 430-12500 10
38 MERSI 402-12750 20
39 SEVIRI 560-14400 12
40 VIIRS 412-13350 22
41 MSU-MR 500-12500 6
42 OCM-2 402-885 8
43 UK-DMC 2 520-900 3
44 DubaiSat-1 420-890 5
45 Resurs-DK1 500-800 4
46 Monitor-E 510-900 4
47 AISA 400-2506.7 498
48 CASI_spatial 417-806 11
49 DAIS-7915 400-12600 79
50 HYDICE 400-2500 210
51 AHS 428.5-13140 80
52 IRS-1D 500-1700 5
53 IRS-1C 500-1700 5
54 Sentinel-2A 433-2280 13
55 VENμS 400-920 12
56 GOMOS 250-952 5
57 MIPAS 685-2410 5
58 SCIAMACHY 240-2380 15
59 CASI 550 400-1000 288
60 CASI1500 380-1500 288
61 GLI 375-12500 36
62 ARIES-1 400-2587 105
63 ASAS 400-1020 62
64 INSAT-2E 550-12500 6
66 PHI 400-1000.35 244
67 CASI spectral 391-905.5 96
68 IRS-1A 450-860 4
69 IRS-P2 450-860 4
70 IRS-P3 403-1650 18
71 IRS-1B 450-860 4
72 IRS-P4 402-1700 9
73 CASI EG 474.7-789.5 13
74 MMR 450-2300 7
75 AVNIR 400-920 5
76 Early Bird 450-890 4
77 SIS 450-900 5
78 Resource21 450-1650 6
79 Daedalus 0-13000 12
80 AVIS 550-994 74
81 Azimuth Systems AZ-16 0-13000 12
82 CASI-2 Vegetation 441.53-869.54 12
83 Landsat 8 435-12510 11
84 PROBA-V 440-1635 4
85 Deimos-2 420-890 5
86 SPOT 6 450-890 5
87 SPOT 7 450-890 5
88 CZCS 433-12500 6
89 POLDER 2 443-910 2
90 SASI600 950-2450 100

## References

Nr. Author/Title Year Comment
1 Gitelson, Anatoly A.; Viña, Andrés; Arkebauer, Timothy J.; Rundquist, Donald C.; Keydan, Galina: Leavitt, Bryan - Remote estimation of leaf area index and green leaf biomass in maize canopies 2003
2 Hancock, D. W.; Dougherty, C. T. - Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa 2007
3 Heiskanen, J. - Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data 2006
4 le Maire, Guerric; François, Christophe; Soudani, Kamel; Berveiller, Daniel; Pontailler, Jean-Yves; Bréda, Nathalie; Genet, Hélène; Davi, Hendrik; Dufrêne, Eric - Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass 2008
5 Pearson, R. L.; Miller, L. D. - Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado 1972
6 Peñuelas, J.; Filella, I. - Visible and near-infrared reflectance techniques for diagnosing plant physiological status 1998
7 Serrano, Lydia; Filella, Iolanda; Peñuelas, Josep - Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies 2000
8 Thenkabail, P. S.; Smith, R. B.; De Pauw, E. - Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization 2002

Export bibliographic references as: BibTeXRIS (Endnote)CSV