Index: Normalized Difference 800/680 Pigment specific normalised difference A2, Lichtenthaler indices 1, NDVIhyper

Normalized Difference 800/680 Pigment specific normalised difference A2, Lichtenthaler indices 1, NDVIhyper

Select other Index.

Basic information

Name Normalized Difference 800/680 Pigment specific normalised difference A2, Lichtenthaler indices 1, NDVIhyper
Abbreviation ND800/680
Formula ( 800nm - 680nm ) 800nm - 680nm
Variables
Expl. of Variables
Wavelengths 680,800
Source Original formula
Description

Visualisation of required spectral range

Bands
zoom Bands

Sensors

Nr. Name Spectral Range Bands Specific Formula Calculated Comment
1 AHS 428.5-13140 80 ( 13 - 9 ) 13 - 9 Automatic
2 AISA 400-2506.7 498 ( 174 - 122 ) 174 - 122 Automatic
3 ALI 433-2350 10 ( MS___4 - MS___3 ) MS___4 - MS___3 Automatic
4 ALOS 0-890 6 ( 5 - 4 ) 5 - 4 Automatic
5 ARIES-1 400-2587 105 ( 22 - 15 ) 22 - 15 Automatic
6 ASAS 400-1020 62 ( 40 - 28 ) 40 - 28 Automatic
7 ASTER 520-11650 15 ( VNIR_Band3N - VNIR_Band2 ) VNIR_Band3N - VNIR_Band2 Automatic
8 AVHRR 580-12500 6 ( 2 - 1 ) 2 - 1 Automatic
9 AVIRIS 355.15-2515 224 ( 48 - 35 ) 48 - 35 Automatic
10 AVIS 550-994 74 ( 42 - 22 ) 42 - 22 Automatic
11 Azimuth Systems AZ-16 0-13000 12 ( 7 - 5 ) 7 - 5 Automatic
12 CASI spectral 391-905.5 96 ( 77 - 55 ) 77 - 55 Automatic
13 CASI_spatial 417-806 11 ( 11 - 7 ) 11 - 7 Automatic
14 CBERS-1/CBERS-2 450-890 8 ( infrared - red ) infrared - red Automatic
15 ChrisProbaM1 406-1003 62 ( A44 - A26 ) A44 - A26 Automatic
16 ChrisProbaM5 438-1036 37 ( H24 - H9 ) H24 - H9 Automatic
17 CZCS 433-12500 6 ( 5 - 4 ) 5 - 4 Automatic
18 Daedalus 0-13000 12 ( 7 - 5 ) 7 - 5 Automatic
19 DAIS-7915 400-12600 79 ( 22 - 15 ) 22 - 15 Automatic
20 Deimos-2 420-890 5 ( MS4 - MS3 ) MS4 - MS3 Automatic
21 DubaiSat-1 420-890 5 ( MS4_Near_Infrared - MS3_Red ) MS4_Near_Infrared - MS3_Red Automatic
22 Early Bird 450-890 4 ( 4 - 3 ) 4 - 3 Automatic
23 EnMap 420-2450 244 ( 59 - 40 ) 59 - 40 Automatic
24 Formosat-2 450-900 5 ( B4 - B3 ) B4 - B3 Automatic
25 GeoEye-1 450-920 5 ( NIR1 - Red ) NIR1 - Red Automatic
26 GLI 375-12500 36 ( 23 - 12 ) 23 - 12 Automatic
27 HYDICE 400-2500 210 ( 40 - 28 ) 40 - 28 Automatic
28 HyMap 429-2493.8 126 ( 25 - 17 ) 25 - 17 Automatic
29 Hyperion 349.896-2582.28 242 ( B45 - B33 ) B45 - B33 Automatic
30 IKONOS-2 445-900 5 ( nahe_Infrarot - Rot ) nahe_Infrarot - Rot Automatic
31 INSAT-2E 550-12500 6 ( CCD_Near_Infrared - CCD_Visible ) CCD_Near_Infrared - CCD_Visible Automatic
32 IRS-1A 450-860 4 ( 4 - 3 ) 4 - 3 Automatic
33 IRS-1B 450-860 4 ( 4 - 3 ) 4 - 3 Automatic
34 IRS-1C 500-1700 5 ( NIR - Red ) NIR - Red Automatic
35 IRS-1D 500-1700 5 ( NIR - Red ) NIR - Red Automatic
36 IRS-P2 450-860 4 ( 4 - 3 ) 4 - 3 Automatic
37 Kompsat-2 0-900 5 ( 5 - 4 ) 5 - 4 Automatic
38 LandsatETM+ (Landsat7) 450-12500 8 ( NIR - Red ) NIR - Red Automatic
39 LandsatMSS (Landsat1-3) 500-1100 4 ( 3 - 2 ) 3 - 2 Automatic
40 LandsatTM (Landsat4,5) 450-12500 7 ( NIR - Red ) NIR - Red Automatic
41 MMR 450-2300 7 ( 4 - 3 ) 4 - 3 Automatic
42 Monitor-E 510-900 4 ( 4 - 3 ) 4 - 3 Automatic
43 MSU-MR 500-12500 6 ( 2 - 1 ) 2 - 1 Automatic
44 Orbview-1 450-900 5 ( 5 - 4 ) 5 - 4 Automatic
45 Orbview-4 450-2450 200 ( 35 - 23 ) 35 - 23 Automatic
46 PHI 400-1000.35 244 ( 163 - 114 ) 163 - 114 Automatic
47 Pleiades-1 430-950 5 ( NIR1 - Red ) NIR1 - Red Automatic
48 PROBA-V 440-1635 4 ( NIR - RED ) NIR - RED Automatic
49 QuickBird 450-900 5 ( near_infrared - red ) near_infrared - red Automatic
50 RapidEye 440-850 5 ( Near_Infrared - Red ) Near_Infrared - Red Automatic
51 Resource21 450-1650 6 ( 4 - 3 ) 4 - 3 Automatic
52 Resurs-DK1 500-800 4 ( 4 - 3 ) 4 - 3 Automatic
53 SCIAMACHY 240-2380 15 ( PMD4_NIR - PMD3_VIS ) PMD4_NIR - PMD3_VIS Automatic
54 SeaWiFS 412-905 8 ( 7 - 6 ) 7 - 6 Automatic
55 Sentinel-2A 433-2280 13 ( 8 - 4 ) 8 - 4 Automatic
56 SEVIRI 560-14400 12 ( VIS_0.8_ - VIS_0.6 ) VIS_0.8_ - VIS_0.6 Automatic
57 SIS 450-900 5 ( 5 - 4 ) 5 - 4 Automatic
58 SPOT 1-3 500-890 4 ( near_infrared - red ) near_infrared - red Automatic
59 SPOT 4 500-1750 5 ( near_infrared - red ) near_infrared - red Automatic
60 SPOT 5 480-1750 5 ( near_infrared - red ) near_infrared - red Automatic
61 SPOT 6 450-890 5 ( NIR - RED ) NIR - RED Automatic
62 SPOT 7 450-890 5 ( NIR - RED ) NIR - RED Automatic
63 UK-DMC 2 520-900 3 ( NIR - Red ) NIR - Red Automatic
64 VIIRS 412-13350 22 ( DNB - I1 ) DNB - I1 Automatic
65 WorldView-2 400-1040 9 ( NIR1 - Red ) NIR1 - Red Automatic
66 WorldView-3 400-2365 29 ( Near_IR1 - Red ) Near_IR1 - Red Automatic

Applications

Nr. Name Comment
1 Agriculture
2 Agriculture - Crop yield
3 Soil
4 Vegetation
5 Vegetation - Chlorophyll
6 Vegetation - LAI
7 Vegetation - PAR
8 Vegetation - Stress
9 Vegetation - Vitality

References

Nr. Author/Title Year Comment
1 Apan, Armando; Held, Alex; Phinn, Stuart; Markley, John - Formulation and assessment of narrow-band vegetation indices from EO-1 hyperion imagery for discriminating sugarcane disease 2003
2 Blackburn, G. A. - Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves 1998
3 le Maire, G.; Francois, C.; Dufrene, E. - Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements 2004
4 Lichtenthaler, Hartmut K. - Vegetation Stress: an Introduction to the Stress Concept in Plants 1996
5 Main, Russell; Cho, Moses Azong; Mathieu, Renaud; O’Kennedy, Martha M.; Ramoelo, Abel; Koch, Susan - An investigation into robust spectral indices for leaf chlorophyll estimation 2011
6 Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. - Estimation of plant water concentration by the reflectance Water Index WI (R900/R970) 1997
7 Rouse, J.W., Jr.; Haas,R.H.; Schell, J.A.; Deering, D.W. - Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation 1973
8 Sims, Daniel A.; Gamon, John A. - Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages 2002
9 Wu, Chaoyang; Niu, Zheng; Tang, Quan; Huang, Wenjiang - Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation 2008
10 Zarco-Tejada, P. J.; Miller, J. R.; Noland, T. L.; Mohammed, G. H.; Sampson, P. H. - Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data 2001

Export bibliographic references as: BibTeXRIS (Endnote)CSV

Visualisation of Sensor-Bands

Index:

Sensors:

AHS

AISA

ALI

ALOS

ARIES-1

ASAS

ASTER

AVHRR

AVIRIS

AVIS

Azimuth Systems AZ-16

CASI spectral

CASI_spatial

CBERS-1/CBERS-2

ChrisProbaM1

ChrisProbaM5

CZCS

Daedalus

DAIS-7915

Deimos-2

DubaiSat-1

Early Bird

EnMap

Formosat-2

GeoEye-1

GLI

HYDICE

HyMap

Hyperion

IKONOS-2

INSAT-2E

IRS-1A

IRS-1B

IRS-1C

IRS-1D

IRS-P2

Kompsat-2

LandsatETM+ (Landsat7)

LandsatMSS (Landsat1-3)

LandsatTM (Landsat4,5)

MMR

Monitor-E

MSU-MR

Orbview-1

Orbview-4

PHI

Pleiades-1

PROBA-V

QuickBird

RapidEye

Resource21

Resurs-DK1

SCIAMACHY

SeaWiFS

Sentinel-2A

SEVIRI

SIS

SPOT 1-3

SPOT 4

SPOT 5

SPOT 6

SPOT 7

UK-DMC 2

VIIRS

WorldView-2

WorldView-3

List of Indices